
Proof in Axiomatic Language1

Walter W. Wilson[0009−0009−2169−8763]
2

(retired), Fort Worth TX, USA3

wwwilson@acm.org4

Abstract. This paper describes a system of proof for a type of logic pro-5

gramming called axiomatic language [www.axiomaticlanguage.org]. The6

language is defined and its relation to traditional logic programming is7

discussed. Axiomatic language is intended for specification, and proof8

would be used to prove assertions about the specifications. The proof9

system is not based on logic but on the inference rules of axiomatic10

language. The integration between proof and the specification language11

should help support formal verification. A proof checker has been imple-12

mented in a Prolog-like restricted form of axiomatic language.13

Keywords: proof · specification · formal verification.14

1 Introduction15

Formal verification can benefit from a tight integration with the programming16

language being used. This paper presents a proof system for a type of logic pro-17

gramming called “axiomatic language” [5, 6]. Axiomatic language is intended as a18

pure specification language, so its implementation requires automatically synthe-19

sizing efficient programs from user specifications – a grand challenge of computer20

science. If this ambitious goal can be achieved, the higher level of specifications21

relative to implementation code should yield a programming productivity benefit22

[3].23

Axiomatic language is minimal and pure, which makes it well-suited to proof.24

The proof system would be used to prove assertions about a user’s specification to25

validate it. This would be more powerful than just testing. (A test case checks a26

single input. A proven assertion helps check a class of inputs.) Proof would also be27

incorporated into an eventual axiomatic language implementation to guarantee28

equivalence between the user’s specification and the generated efficient program.29

This proof system is not based on logic but instead on the inference rules30

of axiomatic language itself. This should make proofs more understandable and31

modifiable by future axiomatic language programmers and should help support32

the formal validation and verification of axiomatic language software. (Here, val-33

idation means showing that the axiomatic language specification represents the34

user’s intent, and verification means the generated efficient program is proven35

equivalent.) A proof checker has been implemented in a restricted form of ax-36

iomatic language that executes like pure Prolog.37

Section 2 reviews axiomatic language. Proof in axiomatic language is defined38

in section 3. Section 4 gives some final comments.39

2 W. Wilson

2 Axiomatic Language40

This section defines axiomatic language. Axiomatic language has the following41

goals: (1) pure specification, (2) extreme minimality, (3) metalanguage extensi-42

bility, and (4) beauty. Section 2.1 gives the main idea of the language. Section 2.243

gives the definitions and rules of the core language, and section 2.3 gives syntax44

extensions. Section 2.4 has some examples and some summary comments.45

2.1 Main Idea – Specification by Enumeration46

The main idea of axiomatic language is that the external behavior of a program47

– even an interactive program – can be represented by a static, infinite set of48

symbolic expressions. Each expression encodes the program input – or sequence49

of inputs – along with the corresponding output for an execution of the program,50

as seen by an external observer. The set of such expressions would enumerate all51

possible executions, one for each possible program input. Our claim is that this52

infinite set of symbolic expressions idealistically specifies the external behavior53

of a program, without having anything to say about the internal processing.54

Note that in axiomatic language the expressions have no inherent meaning; they55

are interpreted by the human user and the implementation system to represent56

bits, characters, lines of text, etc. of the external real-world environment.57

For a program that reads an input text file and writes an output text file, each58

‘Program’ expression can represent the input and output files with a sequence of59

symbolic expressions representing lines, each a sequence of symbolic expressions60

representing characters. For a program that sorts the lines of an input file, the61

infinite set of expressions would enumerate each possible input text file along62

with the sorted output file:63

(Program () ()) - empty input file -> empty sorted output64

...65

(Program ("C" "A") ("A" "C")) - two single-char lines sorted66

...67

(Program ("cat" "dog" "ant") ("ant" "cat" "dog")) - 3-line file68

...69

These symbolic expressions show character strings, but, as section 2.3 explains,70

these character strings are just a syntax extension for underlying abstract sym-71

bolic expressions, which are then interpreted as character strings. The infinite set72

of these Program expressions specifies this sorting program without specifying a73

sorting algorithm.74

For an interactive program that, say, reads and writes lines of text in a75

text window, a typical program might write blocks of zero or more output lines76

interspersed with single input lines typed by the user. Each Program expression77

would contain the sequence of inputs and outputs for an execution history. The78

infinite set of Program expressions would give all possible execution histories79

based on all possible inputs the user might type at any point.80

Proof in Axiomatic Language 3

Consider a program that accepts arbitrary input strings and checks whether81

any parentheses present are balanced, giving an error message if not. An empty82

input string halts the program. An example Program expression (with annota-83

tions) might be as follows:84

(Program85

("Enter character strings with balanced parentheses."86

"An empty string ends the program.") - initial output lines87

"((xyz)a b)()" - correct user input line88

() (no output lines)89

"(W) (W))12)" - incorrect input line90

(" ^ unmatched right parenthesis") - error msg output91

"((()"92

(" ^ unmatched left parentheses")93

"" - empty input line ends program94

("End-of-program.") - final output line95

)96

This symbolic expression represents a possible execution of this interactive pro-97

gram as seen by an external observer. An infinite set of these expressions, for98

all possible execution histories, can be considered a static specification of this99

interactive program.100

For real interactive graphics it shouldn’t be difficult to come up with a con-101

vention for symbolically representing screen pixels and mouse movements. The102

implementation system would need to “understand” this convention in order to103

synthesize a program with actual graphics operations.104

The emphasis here is that these expressions are just abstract hierarchical105

symbolic expressions with no built-in meaning. They are just interpreted by106

the human user and a future implementation system to represent real-world107

entities. Note that in order to define Program expressions one will likely need to108

define predicates for supporting utilities like arithmetic, but these would also be109

symbolic expressions interpreted by the human user.110

Using an infinite set of abstract symbolic expressions to specify the external111

behavior of a program provides a clean, idealistic separation between specifi-112

cation and implementation. It is a nice solution to the “awkward” problem of113

input/output in declarative languages. All that is required of the specification114

language is that it be a formal system for defining these infinite sets – and that115

is what axiomatic language is. Unlike the non-logical input/output predicates of116

Prolog, axiomatic language is completely pure.117

2.2 The Core Language118

In axiomatic language a finite set of axioms generates a (usually) infinite set of119

valid expressions. An expression is120

an atom – a primitive atomic symbol,121

4 W. Wilson

an expression variable,122

or a sequence of zero or more expressions and string variables.123

Syntactically, atoms are represented by symbols that begin with a backquote:124

`abc, `+. Expression and string variables begin with % and $, respectively. Se-125

quences have their elements separated by blanks and enclosed in parentheses:126

(`M () (% $1)).127

An axiom consists of a conclusion expression and zero or more condition128

expressions:129

<conclu> < <cond1>, ..., <condn>.130

<conclu>. ! an unconditional axiom131

Comments start with an exclamation point and run to the end of the line.132

Axioms generate axiom instances by the substitution of values for the133

expression and string variables. An expression variable can be replaced by an134

arbitrary expression, the same value replacing the same variable throughout the135

axiom. A string variable can be replaced by a string of zero or more expressions136

and string variables. For example, the axiom137

(`A %x $w)< (`B ($ %y %x)), (`C $w).138

has an instance139

(`A `x `u `v)< (`B (() `x)), (`C `u `v).140

by the substitution of `x for %x, () for %y, the string `u `v for $w, and the null141

string for $.142

Axiom instances generate valid expressions by the rule that if all the con-143

ditions of an axiom instance are valid expressions, the conclusion is a valid144

expression. By default, the conclusion of an “unconditional” axiom instance is a145

valid expression. For example, the two axioms146

(`a `b).147

((%) $ $)< (% $).148

generate valid expressions (`a `b), ((`a) `b `b), (((`a)) `b `b `b `b),149

. . . .150

2.3 Syntax Extensions151

The expressiveness of axiomatic language is enhanced with some syntax exten-152

sions. A single character in single quotes is equivalent to writing an expression153

that gives the binary code of the character using bit atoms:154

'A' == (`char (`0 `1 `0 `0 `0 `0 `0 `1))155

A character string in single quotes within a sequence is equivalent to writing the156

characters separately in that sequence:157

Proof in Axiomatic Language 5

(... 'abc' ...) == (... 'a' 'b' 'c' ...)158

A character string in double quotes represents the sequence of those characters:159

"abc" == ('abc') == ('a' 'b' 'c')160

A symbol that does not begin with ` % $ () ' " is syntactic shorthand for161

an expression that gives the symbol as a character string,162

ABC == (` "ABC")163

and uses the atom represented by just the backquote.164

2.4 Examples165

Here are axioms for natural numbers in successor notation and their addition:166

(num 0). ! n0: zero is a natural number167

(num (s %n))< (num %n). ! ns: successor of nat num is nat num168

169

(plus 0 % %)< (num %). ! p0: 0 + n = n170

(plus (s %1) %2 (s %3))< ! ps: 1+n1 + n2 = 1+n3 if171

(plus %1 %2 %3). ! n1 + n2 = n3172

These axioms generate valid expressions such as (num (s (s 0))) and (plus173

(s (s 0)) (s 0) (s (s (s 0)))), representing the statements “2 is a natural174

number” and “2 + 1 = 3”, respectively.175

String variables enable more concise definitions of list predicates:176

(member % ($1 % $2)). ! expr is member of a sequence177

(concat ($1) ($2) ($1 $2)). ! concatenation of two sequences178

In summary, axiomatic language can be roughly described as pure, definite179

Prolog with Lisp syntax, string variables, and HiLog-like higher-order general-180

ization [1]. Lisp syntax provides a single uniform representation for data lists,181

terms, functions, and predicates. It provides syntactic flexibility for new lan-182

guage features, like infix operators, and natural support for higher-order forms,183

where code is treated as data. String variables complement expression variables.184

An expression variable represents a single expression; a string variable represents185

a string of zero or more expressions and string variables within a sequence.186

Note that axiomatic language does not include built-in true/false values.187

However, this concept is easily defined and one can then define assorted Boolean188

functions and predicates. Axiomatic language is more like a type of formal lan-189

guage, except that instead of generating words as flat strings from a finite al-190

phabet, axiomatic language generates recursively-enumerable hierarchical ex-191

pressions formed from an infinite set of atom symbols and variables.192

Axiomatic language also differs from Prolog in its goal of minimality and193

purity – no input/output operations, no state changes, no non-logical operations,194

6 W. Wilson

no built-in predicates of any kind. For example, there is no built-in function for195

inequality between distinct atoms, but it is easy to define inequality between196

distinct syntax-extension symbols. The axiomatic language emphasis on pure197

specification means there is no execution model. Specification by enumeration198

defines program external behavior without defining internal computation steps.199

The only “semantics” for axiomatic language is the inference rules for generating200

axiom instances from an axiom and for generating valid expressions from axiom201

instances.202

3 Proof in Axiomatic Language203

This section proposes a system of proof for axiomatic language. Consider the204

following candidate axiom:205

(num (s (s %)))< (num %). ! nss: 2+n is num if n is num206

If added to the above natural number axioms n0,ns, no new natural number207

valid expressions are generated.208

3.1 Valid Clauses209

A clause is defined the same as an axiom – a conclusion and zero or more210

conditions. (Axioms are just specially designated clauses.) Assigning values to211

the clause variables gives a clause instance. If all the conditions of a clause212

instance are valid expressions for a set of axioms, then the conclusion is a gen-213

erated expression. A clause is a valid clause with respect to a set of axioms if214

all its generated expressions are valid expressions for those axioms. Thus, adding215

a valid clause to a set of axioms does not add to the set of valid expressions.216

Clause nss above is thus a valid clause with respect to the natural number ax-217

ioms. One can say that a valid clause is “implied” by the set of axioms. It can218

be considered a “true statement” about the axioms.219

3.2 Rules for Proving Valid Clauses220

Given a set of axioms, the following rules can be used to derive valid clauses:221

R1 – An axiom is a valid clause.222

R2 – An instance of a valid clause is a valid clause.223

R3 – A permutation of valid clause conditions gives a valid clause.224

R4 – Adding a condition to a valid clause gives a valid clause.225

R5 – For any set of axioms we have this tautological valid clause:226

% < % .227

R6 – For every valid expression ‘ve’, we have this valid clause:228

ve.229

Proof in Axiomatic Language 7

R7 – If no instance of expression ‘nve’ is a valid expression, its occurrence230

as a condition gives a valid clause (because no expressions can be generated):231

% < ...,nve,....232

R8 – Consider valid clauses A and B,233

A: a0 < a1,...,an.234

B: b0 < b1,...,bm.235

where a0,b0 are conclusions and a1..an,b1..bm are conditions. If some condition236

ak is identical to conclusion b0, then we can construct valid clause C from clause237

A where condition ak is replaced by conditions b1..bm of clause B:238

C: a0 < a1,..,ak-1,b1,..,bm,ak+1,..,an.239

We call this an unfold of valid clause A condition k with valid clause B. Using240

the above rules we can now show that clause nss is valid:241

a: (num (s %))< (num %). R1 - axiom ns242

b: (num (s (s %)))< (num (s %)). R2 - instance of a243

nss: (num (s (s %)))< (num %). R8 - unfold b with a244

R9 – Induction Rule. To show clause C valid,245

C: c0 < c1,...,cn.246

we need to show that all its generated expressions are valid. For each generated247

expression, a condition ci was matched with a valid expression, generated by248

some axiom. We can get all the ways that ci can be matched by unfolding it249

against the set of axioms. Each successful unfold of ci with an axiom Aj =250

a0<a1,..,an produces a clause C_Aj:251

C_Aj: c0' < c1',..,ci-1',a1',..,an',ci+1',..,cn'.252

The primes indicate that the substitution of the most-general unification between253

ci and a0 has been applied to the result clause. The set of C_Aj clauses covers254

all the ways that the original clause C can generate expressions. If all the C_Aj255

clauses can be proved valid, then C is valid. The induction hypothesis means we256

can unfold a valid clause condition with clause C in order to prove that a result257

clause C_Aj is valid.258

Finally, note that for axiom sets A and B, if all the axioms of B can be259

shown to be valid clauses of axiom set A and all the axioms of A can be shown260

to be valid clauses of set B, then sets A and B generate the same set of valid261

expressions and are referred to as “equivalent axiom sets”. Every clause that can262

be proven valid with respect to one axiom set is valid with respect to the other.263

Typically, we will be proving that one subset of axioms is equivalent to another264

subset, given the rest of the axioms in the set. An induction proof may unfold265

against either subset.266

8 W. Wilson

3.3 Some Example Proofs267

The natural number addition axioms p0,ps above do recursion on the first argu-268

ment. Alternative axioms, pa0,pas, that do recursion on the second argument,269

can be proved valid with respect to p0,ps,n0,ns as follows:270

ps0: (plus (s %) 0 (s %)< (plus % 0 %). - instance of ps271

272

pa0: (plus % 0 %)< (num %). - induction on cond 1273

pa0_n0: (plus 0 0 0). - = p0 unfolded with n0274

pa0_ns: (plus (s %) 0 (s %))< (num %). =unf ps0 w ind hyp pa0275

276

pas: (plus %1 (s %2) (s %3))< (plus %1 %1 %3). -induc on cond 1277

pas_p0: (plus 0 (s %) (s %))< (num %). - = unfold p0 with ns278

pas_ps: (plus (s %1) (s %2) (s (s %3)))< (plus %1 %2 %3).279

- = unfold of ps with induc hypoth pas280

Similar proofs can show that axioms p0,ps are valid clauses with respect to axiom281

set pa0,pas,n0,ns, thus showing that the two subsets are equivalent.282

A proof checker has been implemented in a restricted form of axiomatic283

language where string variables can only occur at the ends of sequences. This284

enables definition of a Prolog-like query solver which can check small proofs,285

such as the commutativity of natural number addition. [4]286

4 Final Comments287

Axiomatic language proof is inspired by the logic programming transformations288

of Alberto Pettorossi, Maurizio Proietti, and colleagues (e.g., [2]). Their approach289

involves provably-correct incremental modifications to a set of program clauses290

to produce an equivalent program that is more efficient. The approach here is291

to prove clauses valid from a fixed set of axioms.292

Future work will include proving the correctness of the proof inference rules.293

More example proofs will be defined, possibly with new proof rules, such as294

proving that a clause is not valid.295

References296

1. Chen, W., Kifer, M., Warren, D.S.: Hilog: A foundation for higher-order logic pro-297

gramming. The Journal of Logic Programming 15(3), 187–230 (1993)298

2. Pettorossi, A., Proietti, M.: Transformation of logic programs: Foundations and299

techniques. The Journal of Logic Programming 19, 261–320 (1994)300

3. Wilson, W.: Phonecode, http://www.axiomaticlanguage.org/phcode/paper.pdf,301

4. Wilson, W.: Proof checker, http://www.axiomaticlanguage.org/proof/checker.htm302

5. Wilson, W.: Beyond prolog: Software specification by grammar. SIGPLAN Not.303

17(9), 34–43 (Sep 1982). https://doi.org/10.1145/947955.947959304

6. Wilson, W., Lei, Y.: A tiny specification metalanguage. In: Proc. of 24th Intl.305

Conf. on Software Engr. & Knowledge Engr. (SEKE’2012). pp. 486–490 (2012),306

http://ksiresearchorg.ipage.com/seke/Proceedings/seke/SEKE2012_Proceedings.pdf307

