
Axiomatic Language
Walter W. Wilson

Axiomatic language is proposed as a tool for greater programmer productivity and software reliability.

Goals – Axiomatic language has the following goals: (1) pure specification – you tell the computer
what to do without telling it how to do it, (2) minimal, but extensible – as small as possible without
sacrificing expressiveness, (3) a metalanguage – able to incorporate the capabilities and advantages of
other languages, and (4) beauty.

Idea – Axiomatic language is based on the idea that the external behavior of a function or program –
even an interactive program – can be represented by a static, infinite set of symbolic expressions.
These expressions enumerate all possible inputs – or sequences of inputs – along with the
corresponding outputs. For an interactive program each expression would record the inputs/outputs of
a particular execution history as seen by an external observer. The set of expressions would cover all
possible execution histories. The language is just a formal system for defining these infinite sets.

Recipe – Axiomatic language can be described as pure, definite Prolog with Lisp syntax, HiLog
higher-order generalization, and “string variables”, which match a string of expressions in a sequence.
(See details here.)

Example – In axiomatic language a finite set of “axioms” generates a (usually) infinite set of “valid
expressions”. For example, the following two axioms,

 (a b).
 ((%) $ $)< (% $).

generate the valid expressions (a b), ((a) b b), (((a)) b b b b), etc. The symbols % and $ are expression
and string variables, respectively.

Benefits – Specifications should be smaller and more readable than algorithms. (Specifications just
define external behavior while implementation code defines both external behavior and internal
processing.) Specification definitions should also be more reusable than code constrained by
efficiency. Thus, smaller code size should provide increased programmer productivity.

The purity and small size of axiomatic language should make it well-suited to proof. Proof would
guarantee equivalence between the user's specification and the generated program. One may also be
able to prove assertions about specifications to validate them and this could be more powerful than just
testing.

Implementation Challenge – The problem of automatically transforming specifications to efficient
programs can be considered a grand challenge of computer science. If the target is a parallel machine,
it subsumes the problem of automatic parallelization. This transformation problem is a form of the old
automatic programming problem, except that here we are not trying to understand natural language
requirements and the system is not expected to have knowledge about any particular application
domain. Also, the specifications are complete – the system doesn't have to infer an input/output
function from examples.

In summary, axiomatic language can be seen as idealistic in its goals, intriguing in its potential, and
formidable in its realization.

http://www.axiomaticlanguage.org/
http://www.axiomaticlanguage.org/seke2012-WilsonWW.pdf

