

A Foundation for the

 DoD Digital Transformation

Walter W. Wilson

Lockheed Martin

January 28, 2021

1. The Challenge

Recent documents give a vision for a DoD digital transformation. The 2018 "Digital

Engineering Strategy" [Digital-Engineering-Strategy_Approved.pdf (sercuarc.org)] has

goals that include replacing documentation with digital models, end-to-end digital

representation, and rapid innovation in the supporting environments. Dr. Will Roper's

papers "Take the Red Pill" [Take_the_Red_Pill-Digital_Acquisition.pdf (af.mil)] and

“There is no Spoon [https://software.af.mil/wp-content/uploads/2020/10/There-Is-No-

Spoon-Digital-Acquisition-7-Oct-2020-digital-version.pdf] advocate an open-architecture

government-owned "tech stack", digital threads that connect lifecycle phases, and digital

twins that connect models with real-world systems.

This paper argues that a successful digital transformation needs a good data

representation. It should be a textual, human-readable language that can also serve as

good documentation. It should have the power of programmability. (The same language

can be used to define the supporting software.) A single language would be more efficient

for digital threads than a multitude of file formats and interface standards. (We spend a

lot converting data from one format to another.) A single programming language for the

software tools would support better integration. A digital representation should support

formal verification – proving programs correct. In a pervasive digital world, bugs can be

catastrophic: https://spectrum.ieee.org/riskfactor/computing/it/coding-error-leads-293-

subaru-ascents-to-the-car-crusher, Mars Probe Lost Due to Simple Math Error - Los

Angeles Times (latimes.com). Proof may be our best/only hope for cyber security.

Probably the biggest component of the tech stack is the CAD system. My vision for CAD

[http://www.axiomaticlanguage.org/A_Vision_for_CAD_released.pdf] aligns with Dr.

Roper's call for an open architecture. Commercial CAD holds our design data hostage,

leads to huge migration costs, and makes design innovation difficult due to its black-box

nature. Also, the long-term accessibility of our design data could be in doubt.

https://sercuarc.org/wp-content/uploads/2018/06/Digital-Engineering-Strategy_Approved.pdf
https://www.af.mil/Portals/1/documents/7/Take_the_Red_Pill-Digital_Acquisition.pdf
https://software.af.mil/wp-content/uploads/2020/10/There-Is-No-Spoon-Digital-Acquisition-7-Oct-2020-digital-version.pdf
https://software.af.mil/wp-content/uploads/2020/10/There-Is-No-Spoon-Digital-Acquisition-7-Oct-2020-digital-version.pdf
https://spectrum.ieee.org/riskfactor/computing/it/coding-error-leads-293-subaru-ascents-to-the-car-crusher
https://spectrum.ieee.org/riskfactor/computing/it/coding-error-leads-293-subaru-ascents-to-the-car-crusher
https://www.latimes.com/archives/la-xpm-1999-oct-01-mn-17288-story.html
https://www.latimes.com/archives/la-xpm-1999-oct-01-mn-17288-story.html
http://www.axiomaticlanguage.org/A_Vision_for_CAD_released.pdf

2. A Proposal

This paper advocates a type of logic programming called "axiomatic language"

[http://www.axiomaticlanguage.org/] as an ideal foundation for representing digital data

and its supporting software. It is a pure specification language, which should provide

software engineering benefits. Specifications should be smaller, more readable, more

reusable, and more likely to be correct than algorithmic code. The language would

provide both programmability and human-readability. The extensibility and

metalanguage capability of the language makes it a “universal language” – able to

incorporate and subsume the features and expressiveness of other languages. It would

be a good host for embedded domain specific languages (DSLs) – i.e., "language-

oriented programming". Axiomatic language would also be well-suited to formal

verification [http://www.axiomaticlanguage.org/proof.htm].

CAD data would be defined in a textual engineering design DSL defined within axiomatic

language. The open-source geometric engine would provide accessible mathematics

and powerful scripting for design automation/optimization. (See Boeing paper “The Case

for Scripted Process Design and Engineering” [Grandine, 2014 – I have a copy].) The

small size and elegance of axiomatic language would make it a good standard for long-

term design data preservation [http://axiomaticlanguage.org/LOTAR_Thoughts.html].

Note that an open source CAD system may cost less than what the DoD indirectly spends

on commercial CAD licenses. And having government control of the CAD system may

help us avoid costly CAD migration.

3. The Project

The implementation of axiomatic language requires automatically transforming

specifications to efficient programs – a grand challenge of computer science. In earlier

work I created a crude system that could transform some tiny examples

[http://axiomaticlanguage.org/BabySteps.pdf]. Since then I have done some proofs and

worked on an enhanced transformation system that will handle some larger examples like

sorting and arithmetic. This project will continue work on proof and will complete this

enhanced transformation system prototype. Milestones will include (1) implementation of

a proof checker, (2) working out efficient transformation algorithms that will allow the

system to scale to real-world problem sizes, and (3) incorporating proof into some

example transformations for a guarantee of correctness. I believe 1000 hours may be a

reasonable estimate for these tasks. Note that the definition of a CAD system in

axiomatic language would not be part of this project.

http://www.axiomaticlanguage.org/
http://www.axiomaticlanguage.org/proof.htm
http://axiomaticlanguage.org/LOTAR_Thoughts.html
http://axiomaticlanguage.org/BabySteps.pdf

