Baby Steps Toward an Implementation of Axiomatic
Language
Extended Abstract

Walter W. Wilson

Lockheed Martin, P.O. Box 748, Fort Worth TX 76101, USA

wwwilson@acm.org

Abstract. This paper describes an initial crude attempt at implementing a type
of logic programming called "axiomatic language" [www.axiomaticlanguage
.org]. Axiomatic language is a pure specification language so its implementa-
tion requires automatically transforming specifications to efficient programs — a
grand challenge of computer science. The proposed approach is for a transfor-
mation system to have comprehensive knowledge of programming concepts
such as arithmetic, utility functions and their composition, data aggregations,
specification patterns, etc. The system would then "understand" the meaning of
an input specification against this knowledge. From this understanding the sys-
tem would generate an equivalent efficient program using built-in algorithm
knowledge. An initial transformation infrastructure has been developed with
the built-in knowledge to handle a few tiny examples.

Keywords: specification language, program transformation, program synthesis,
axiomatic language.

1 Introduction

This paper describes an initial attempt at implementing a type of logic programming
called “axiomatic language” [AL, Wilson 12, 00, 82]. Axiomatic language is a pure
specification language so its implementation requires automatically transforming
specifications to efficient programs — a grand challenge of computer science. An
approach to do this is proposed and a primitive implementation is described that can
handle some tiny examples.

Section 2 reviews axiomatic language. Section 3 describes a query system for
mapping inputs to outputs. In section 4 the framework of the transformation system is
described and examples are shown. Conclusions are found in section 5.

©2018 Lockheed Martin Corporation

2 Axiomatic Language

This section reviews axiomatic language. Axiomatic language has the following
goals:

1. Pure specification — you tell the computer what to do, not how to do it.
2. Minimal, but extensible — as small as possible without sacrificing expressiveness.
3. Metalanguage — able to define new language features within itself.

Axiomatic language is based on the idea that the external behavior of a program —
even an interactive program — can be represented by a static, infinite set of symbolic
expressions. These expressions enumerate all possible inputs — or sequences of inputs
— along with the corresponding outputs. The language is just a formal system for
defining these infinite sets.

2.1 The Core Language

In axiomatic language a finite set of axioms generates a (usually) infinite set of valid
expressions. An expression is

an atom,
an expression variable,
or a sequence of zero or more expressions and string variables.

Syntactically, atoms are represented by symbols that begin with the backquote charac-
ter: “abc, *+. Expression and string variables are symbols beginning with % and $,
respectively: $x, $1, and $, $Sa. Sequences have their elements separated by blanks
and enclosed in parentheses: ("M (% “x) () Sw).

An axiom consists of a conclusion expression and zero or more condition expres-
sions:

<conclu> < <condl>, .., <condn>.
<conclu>. ! an unconditional axiom

Comments start with an exclamation point and run to the end of the line.

Axioms generate axiom instances by the substitution of values for the expression
and string variables. An expression variable can be replaced by an arbitrary expres-
sion, the same value replacing the same variable throughout the axiom. A string vari-
able can be replaced by a string of zero or more expressions and string variables. For
example, the axiom,

("A %x Sw)< ("B ($ %Sy %x)), (°C $Sw).

has the instance,

by the substitution of *x for $x, () for "y, the string “u “v for $w, and the null
string for s.

Axiom instances generate valid expressions by the simple rule that if all the condi-
tions of an axiom instance are valid expressions, then the conclusion is a valid expres-
sion. By default, the conclusion of an unconditional axiom instance is immediately a
valid expression. For example, the following two axioms,

(*a "b).
$
generate the valid expressions ("a “b), (('a) 'b "b), (((a)) ‘b "b "b "b), etc.

2.2 Syntax Extensions

The expressiveness of axiomatic language is enhanced by defining some syntax ex-
tensions. A single character in single quotes is equivalent to writing an expression
that gives the binary code of the character using bit atoms:

'A' == (‘char (0 1 "0 "0 0 "0 0 “1)).

A character string in single quotes within a sequence is equivalent to writing the char-
acters separately in that sequence:

(.. 'abc') == (.. 'a' 'b' 'c' .)
A character string in double quotes represents the sequence of those characters:
HabCH —_—— (labcl) —_—— (lal lbl ICI)

Finally, a symbol that does not begin with one of the special characters seen so far is
syntactic shorthand for this expression,

ABC == (> "ABC")
which gives the symbol as a character string and uses the atom represented by just the

backquote character.

2.3 Examples

As an example of axiomatic language, here are the familiar definitions of natural
numbers and their addition:
(num 0) . ! zero 1s a number
(num (s %n))< (num %n). ' if n 1is num, so 1s successor

(plus 0 %n %n)< (num %n) ' 0+ n is n
(plus (s %1) %2 (s %3))< ! n1+41 + n2 = n3+1 if
(plus %1 %2 %3). ! nl + n2 = n3

These axioms generate valid expressions such as (num (s (s (s 0)))) and (plus (s 0) (s
0) (s (s 0))), which can be interpreted to mean "3 is a natural number" and "1 + 1 = 2",
respectively.

Axiomatic language string variables can be considered a generalization of Prolog
list tail variables: [x, Y | W] -> (%x %y S$w), but string variables can occur
anywhere in a sequence. They enable more concise definitions of some list predi-
cates:

(member % ($1 % $2)). ! element is member of sequence
(concat (S$1) ($2) ($1 $2)). !concatenation of two segs
(Tappendl ($) % ($ %)). ! append 1 elem to end of seq
("reverse () ()). ! reverse a sequence
(‘reverse (% $) (Srev %))< (reverse ($) (Srev)).

These axioms generate valid expressions such as (member b (a b ¢ d)) and (‘reverse (x
y z) (z y X)). (We use atoms for the appendl and reverse predicate names for con-
ciseness in the examples below.)

24 GAL-SAL-PAL

String variables in axiomatic language have the property that their unification can
have multiple most-general unifiers — even an infinite number. For example, the uni-
fication of (a $) and ($ a) is obtained with any string of a’s assigned to $. (Exercise:
What are the most-general unifiers of ($1 $) and ($ $2)?)

For implementation purposes it is useful to consider restricted forms of axiomatic
language. We call the unrestricted version defined above "general axiomatic lan-
guage" (GAL). A version where string variables are only allowed at the ends of se-
quences is called "simplified axiomatic language” (SAL). An even simpler version
called "primitive axiomatic language" (PAL) has no string variables and sequences
always have length two. Expressions for both SAL and PAL have unique most-
general unifiers.

3 Queries on a Set of Axioms

Axiomatic language is just a formal system for defining recursively enumerable sets
of hierarchical symbolic expressions. To produce outputs from this language we de-
fine "queries" on the set of axioms and their valid expressions. A query is like an
axiom — a conclusion expression and zero or more condition expressions. If all the
conditions of a query instance are valid expressions, the conclusion of that instance is

generated as an "output expression™” or a "solution” to the query. Given the above
axioms, the query

$ < (Tappendl (a b c) d %).

generates the solution expression (a b ¢ d). A query can produce multiple most-
general solutions, even an infinite number. For example, the query

% < (‘reverse % %).

enumerates the set of palindromes:

% oo —

o°

o°

(
(
(
(
(

o O O o
o°

== o
o°

= O
-

o°
o°
o°

o°
o
—

3.1 An SAL Query System

A simple query system for SAL axioms has been implemented. This top-down SLD
solver selects query conditions (goals) in left-to-right order and resolves them against
axioms (clauses) in axiom order. But, of course, this implementation often suffers
from inefficiency and non-termination when given high-level specification axioms
such as higher-order forms and metalanguage examples. Thus it does not qualify as
an implementation of axiomatic language. Also, it only implements SAL instead of
GAL to avoid the complexities of string variable unification. But this implementation
can be usable for small examples that are carefully written.

3.2 Query Formats

In order to define programs that map inputs to outputs, we use "query formats". A
query format is a query where some variables are “Inputs”, with an uppercase | after
the % or $. (Non-Input variables have an underscore after % or $.) These Input vari-
ables will be replaced by ground expressions to form a query to be executed. (Re-
placement order matches variable symbol order.) A query format thus defines a pro-
gram that maps the Input expressions to the query solution output expressions. For
example, two query formats and some of their input/output mappings are as follows:

o) o)

% result < (‘appendl %$I0list %Ilx % result).
0. x => (x)
(@abc),d => (abcd)

‘yes < (‘reverse %$Ilist %$Ilist).
(aba) => “yes
(ab) => <no output>

The second query format tests whether a list is a palindrome and writes out the atom
“yes if so, or nothing if not.

4 A Transformation System

41 The Problem

Our problem is to automatically transform a user's GAL specification axioms and
query format into an equivalent efficient program. We want this transformation pro-
cess to be completely automatic since, otherwise, it negates the benefits of writing
specifications. We would also like a guarantee of equivalence between the generated
efficient program and the input specification, but providing this guarantee with proof
is left to future work.

For now we will let an SAL axiom set and query format be our target "efficient"
program, which will run on the current SAL interpreter. A future processing step will
transform this SAL program into a procedural program in, say, a C subset, which will
provide a significant constant-factor speed-up. Keeping the near-term implementa-
tion target as axioms will provide a better framework for future proof.

Note that unlike some program synthesis, we do not have to deal with natural lan-
guage requirements. Nor do we derive a specification from input/output examples
[Gulwani et al 17]. For this problem we have a specification that is complete and
completely formal.

This problem has been addressed by the logic programming transformation work
of Pettorossi, Proietti, and colleagues [MAP]. They start with a specification-like
logic program and then apply incremental transformation steps to produce a final,
equivalent logic program that can execute with greater efficiency. Each step has a
proven guarantee of semantic equivalence. But their process is not completely auto-
matic since some interactive guidance may be needed.

4.2 The Approach

The approach of this paper is to first "understand” the user’s specification and then
generate an equivalent efficient program to solve it. We need to understand a specifi-
cation in terms of the high-level concepts that a human programmer would understand
it. We decompose this understanding process into two phases. First we understand
the set of valid expressions defined by the set of GAL axioms. Then we understand
the function defined by a query format against those valid expressions. Once the
specification is understood, the final step is to use built-in algorithm knowledge to
generate the executable SAL axioms and query format.

A set of axioms defines a recursively enumerable set of abstract symbolic expres-
sions without any inherent meaning. But to the human that wrote them, those expres-
sions represent "concepts” like arithmetic, list predicates, sorting, etc. We want to
"recognize” these concepts when valid expressions represent them. We want to ex-
tract the high-level meaning of the set of valid expressions and then encode this un-
derstanding into a "Valid Expression Definition" (VED) expression that represents
this high-level meaning along with its syntactic representation. Given that axiomatic
language encourages the use of powerful higher-order forms and embedded language
features for specification expressiveness, we must be able to recognize and under-
stand sophisticated specification patterns as well.

Once we have a high-level description of the set of valid expressions embodied in a
VED expression, a query format defines a function that maps input expressions to the
set of query output expressions. This function also needs to be recognized and under-
stood in terms of high-level programming concepts. This understanding is encoded as
a "Function Definition" FD expression.

To completely understand the meaning of a typical axiomatic language specifica-
tion will require a transformation system with comprehensive human programmer
knowledge. One can argue that no finite amount of knowledge can successfully trans-
form all possible specifications that a user might write. There will always be new
concepts that the knowledge base doesn’t cover or one might specify a familiar con-
cept in an arbitrarily complicated way. When that happens an expert would need to
add transformation knowledge to the system to enable it to handle the new specifica-
tion. The goal will be to have sufficient built-in knowledge to automatically trans-
form straightforward specifications for most typical programs.

4.3 A Working Example

This section gives some results computed by an initial transformation system written
in SAL. Given the GAL axioms for the “appendl and ‘reverse predicates in section
2.3, the first step is to encode these axioms as a ground data expression suitable for
processing. An encoded axiom set is just a sequence of encoded axioms, each an
encoded conclusion expression followed by the encoded conditions. An encoded
sequence is just a sequence of encoded elements. We let encoded expression and
string variables be represented by symbols beginning with # and *, respectively. It is
also helpful to have atoms be represented by non-atom symbols beginning with .
(period). Our “appendl and “reverse axiom set is thus encoded as follows:

(((.appendl (*
((.reverse ()
((.reverse (#

)

))

(*rev #)) (.reverse (*) (*rev)))

) #(* #)))

0

*)

The transformation system “recognizes” the pattern of these definitions and thus

“understands” the predicate concepts they represent. A Valid Expression Definition
expression is then formed that represents the meaning of the generated valid expres-

sions. For this axiom set we have the following VED expression that defines the
appendl and reverse predicate valid expressions:

((Appendl .appendl seq (1 x 1x))
(Reverse .reverse seq))

Each predicate expression gives the predicate concept, the encoded predicate name,
and some arguments. The “seq” symbol says that lists are represented as ordinary
sequences, the “(l X Ix)” expression gives the argument order for the append] predi-
cate (list, expression, list with expression appended). These argument symbols repre-
sent built-in knowledge concepts that the transformation system “knows about”. One
can view a VED expression as a terse form of documentation for the human reader in
addition to being a formal definition of the set of valid expressions.

Given the set of valid expressions defined by the VED expression, a query format
clause defines a function between input expressions and a set of output expressions.
A Function Definition expression is produced that represents this function using built-
in concepts. For the example query formats of section 3.2 we have the following FD
expressions:

(Appendl seq (1 x) # 1x)
(Palindrome_ test seq .yes)

The Appendl function has implied ordered Input variable names of $101 and $11x,
given argument (I x), or $10x and %111, given argument (x I). The output variable
name is % 1x. The last argument of the FD expressions is the encoded output ex-
pression which includes the output variables and, optionally, the Input variables.

Our final transformation step is to generate an executable SAL axiom set and query
format from the above Function Definition expressions using built-in algorithm
knowledge. From the Appendl FD expression, we get the following SAL axiom set
and query format:

(Tappl () %x (%x))
(Tappl (% $) %x (% $')) < (“appl ($) %x (S$'))
gl % 1x < (“appl %I01 %Ilx % 1x).

Note that having different predicate names for the SAL axioms is fine, so long as the
query format outputs are identical. For the Palindrome_test FD expression we have:

("rev %$seq Srev) < (‘rev_acc %seq () %rev).
("rev_acc () %rev Srev).
("rev_acc (% $segsuf) (Srevpre) Srev) <

("rev_acc (Sseqgsuf) (% Srevpre) Srev).
qf: “yes < (‘rev $I1 $I1).

Note that the “reverse accumulator” predicate enables computation of the reverse
function in O(n) time instead of O(n"2) time for naive reverse.

5 Conclusions

Axiomatic language is proposed as a tool with potential software engineering bene-
fits. Specifications should be smaller, more readable, more reusable, and more cor-
rect than algorithmic code. The small size and purity of the language should make it
well-suited to proof.

But the implementation of axiomatic language requires encoding much of human
progamming knowledge into a transformation system. A crude, initial attempt has
been presented that can handle a few tiny examples. Future work will grow this sys-
tem to determine if this approach can possibly scale to real-world-sized problems.

References

[AL] Axiomatic Language homepage, http://axiomaticlanguage.org/.

[Gulwani et al 17] Gulwani, S., Polozov, O., Singh, R., Program Synthesis. In: Foundations
and Trends in Programming Languages, 4(1-2), 1-119, http://dx.doi.org/10.1561/25000
00010 (2017).

[MAP] MAP Transformation System, http://www.iasi.cnr.it/~proietti/system.html.

[Wilson 12] Wilson, W., Lei, Y., A tiny specification metalanguage, 24" Intl. Conf. on
Software Engineering and Knowledge Engineering (SEKE), pp. 486-490 (2012).

[Wilson 00] Wilson, W., A minimal specification language, LOPSTR Pre-Proceedings
(2000).

[Wilson 82] Wilson, W., Beyond Prolog: software specification by grammar, ACM
SIGPLAN Notices, 17(9), 34-43, Sept. (1982).

http://axiomaticlanguage.org/
http://dx.doi.org/10.1561/25000%2000010
http://dx.doi.org/10.1561/25000%2000010
http://www.iasi.cnr.it/~proietti/system.html

